CryoEM Facility

Electron Microscopy Sample Characterization, CNB-CSIC, Madrid, Spain
Electron Microscopy and Cryo-CLEM, CNB-CSIC, Madrid, Spain

 

The Cryo-EM – CSIC facility provides expertise to researchers with samples in the first stages of characterisation. Samples in solution are analysed by negative staining in search of the best conditions. Once found, samples are subjected to different vitrification conditions to test the optimal parameters for grid preparation, which are then screened in a cryomicroscope Talos Arctica 200 kV equipped with a Falcon III electron direct detector. The best grids are used to acquire data for image processing, and in this regard it is advisable to contact the EM Image Processing service for support in the data processing. Recently, the facility has acquired a 300 kV cryomicroscope JEOL CryoARM300 equipped with a Gatan K3 direct detector, so a service only consisting in high-end data acquisition from a valid grid is also available.

Equipment

  • Vitrification: FEI Vitrobot and a Leica EM CPC
  • JEOL JEM1400 120 kV for sample screening.
  • Talos Arctica 200 kV equipped with a Falcon III
  • JEOL cryoARM300 equipped with a Gatan K3 electron direct detector and an Omega energy filter

Equipment

 

Jeol CryoARM FEI Talos Arctica Jeol JEM-1400 ZEISS CrossBeam 550 ZEISS LS900 AiryScan 2
Workflows SPA, cryo-ET MicroED, screening, SPA, cryo-ET Negstain SPA, plastic section tomography, cryo-ET Cryo-FIB-SEM volume imaging, lamellae preparation Cryo-ET CryoConfocal imaging, correlative microscopy
Light Source Cold FEG Schottky X-FEG - Gemini 2 (FE-SEM) Lases module URGB (405, 488, 561, 640 nm)
Acceleration 300kV 200kV 120kV 0.5kV to 30kV -
Max. magnification - - 1,500,000 2.5 nm/pxl Zeiss objective LD EC Epiplan-Neofluar 100x/0.75 DIC
Tilt range ± 70º ± 70º ± 70º Leica cryostage -
Main detector Gatan K3
5760 x 4096 @ 75 fps
11520 x 8184 @ 75 fps
TS Falcon 4
4096 x 4096 @ 320 fps
Gatan OneView
4096 x 4096 @ 25 fps
Inlens AiryScan 2
Other detectors - TS Falcon 3
TS Ceta-D
Gatan Rio ES2, EBS ESID detector, 2 PMT detectors
Special features Autoloader
In-column Omega Energy Filter
Autoloader - - Colibri 5/7

 

How to apply

Access all the information related to Instruct and their services

Instruct Centre Lead Scientists

José María Valpuesta

Rocío Arranz Ávila

Fco. Javier Chichon

Mª Teresa Bueno

Noelia Zamarreño

User Support

nzamarre@cnb.csic.es 

J. Javier Conesa

User Support

jj.conesa@cnb.csic.es 

David Delgado

User Support

ddelgado@cnb.csic.es 

Javier Collado

User Support

jcollado@cnb.csic.es 

Scientific Highlights

Recent publications that have benefitted from an Instruct Access to the cryoEM facility.

2022

Architecture of torovirus replicative organelles. Ginés Ávila-Pérez; María Teresa Rejas; Francisco Javier Chichón; Milagros Guerra; José Jesús Fernández; Dolores Rodríguez. 2022, Molecular Microbiology. 117 (837-850).

Nanobodies Protecting From Lethal SARS-CoV-2 Infection Target Receptor Binding Epitopes Preserved in Virus Variants Other Than Omicron. Casasnovas, J.M.; Margolles, Y.; Noriega, M.A.; Guzmán, M.; Arranz, R.; Melero, R.; Casanova, M.; Corbera, J.A.; Jiménez-de-Oya, N.; Gastaminza, P.; Garaigorta, U.; Saiz, J.C.; Martín-Acebes, M.Á.; Fe… 2022, Frontiers in Immunology. 13 (1-12).

Structural mechanism for tyrosine hydroxylase inhibition by dopamine and reactivation by Ser40 phosphorylation. María Teresa Bueno-Carrasco; Jorge Cuéllar; Marte I. Flydal; César Santiago; Trond-André Kråkenes; Rune Kleppe; José R. López-Blanco; Miguel Marcilla; Knut Teigen; Sara Alvira; Pablo Chacón; Aurora Ma… 2022, Nature Communications. 13 (727-734).

The Molecular Chaperone CCT Sequesters Gelsolin and Protects it from Cleavage by Caspase-3: CCT-Gelsolin interaction may affect actin dynamics. Cuéllar, Jorge; Vallin, Josefine; Svanström, Andreas; Maestro-López, Moisés; Bueno-Carrasco, María Teresa; Ludlam, W. Grant; Willardson, Barry M.; Valpuesta, José M.; Grantham, Julie. 2022, Journal of Molecular Biology. 434 (1-131).

2021

Chaperonins: Nanocarriers with biotechnological applications. Sergio Pipaón; Marcos Gragera; M. Teresa Bueno-Carrasco; Juan García-Bernalt Diego; Miguel Cantero; Jorge Cuéllar; María Rosario Fernández-Fernández; José María Valpuesta. 2021, Nanomaterials. 11(1-12).

Imaging of virus-infected cells with soft x-ray tomography. Garriga, D.; Chichón, F.J.; Calisto, B.M.; Ferrero, D.S.; Gastaminza, P.; Pereiro, E.; Pérez-Berna, A.J. 2021, VIRUSES. 13 (1-12).

2020

Capping pores of alphavirus nsP1 gate membranous viral replication factories. Rhian Jones; Gabriel Bragagnolo; Rocío Arranz; Juan Reguera. 2020, Nature. 589(615-619).

Four-Dimensional Characterization of the Babesia divergens Asexual Life Cycle, from the Trophozoite to the Multiparasite Stage. Conesa, J.J.; Sevilla, E.; Terrón, M.C.; González, L.M.; Gray, J.; Pérez-Berná, A.J.; Carrascosa, J.L.; Pereiro, E.; Chichón, F.J.; Luque, D.; Montero, E. 2020, mSphere. 5 (1-12).

Interferon-b Stimulation Elicited by the Influenza Virus Is Regulated by the Histone Methylase Dot1L through the RIG-I-TRIM25 Signaling Axis. Marcos-Villar L; Nistal-Villan E; Zamarreño N; Garaigorta U; Gastaminza P; Nieto A. 2020, Cells. 9 (1-12)

Structural insights into influenza A virus ribonucleoproteins reveal a processive helical track as transcription mechanism. Coloma, R.; Arranz, R.; de la Rosa-Trevín, J.M.; Sorzano, C.O.S.; Munier, S.; Carlero, D.; Naffakh, N.; Ortín, J.; Martín-Benito, J. 2020, Nature Microbiology. 5 (727-734).

The chaperonin CCT controls T cell receptor–driven 3D configuration of centrioles. Martin-Cofreces, N.B.; Chichon, F.J.; Calvo, E.; Torralba, D.; Bustos-Moran, E.; Dosil, S.G.; Rojas-Gomez, A.; Bonzon-Kulichenko, E.; Lopez, J.A.; Otón, J.; Sorrentino, A.; Zabala, J.C.; Vernos, I.; V… 2020, Science Advances. 6 (119-131).

2019

Cryo-Electron Tomography and Proteomics studies of centrosomes from differentiated quiescent thymocytes. Busselez, J.; Chichón, F.J.; Rodríguez, M.J.; Alpízar, A.; Gharbi, S.I.; Franch, M.; Melero, R.; Paradela, A.; Carrascosa, J.L.; Carazo, J.M. 2019, Scientific Reports. 9 (1-12).

Structural insights into the ability of nucleoplasmin to assemble and chaperone histone octamers for DNA deposition. Franco, A.; Arranz, R.; Fernández-Rivero, N.; Velázquez-Campoy, A.; Martín-Benito, J.; Segura, J.; Prado, A.; Valpuesta, J.M.; Muga, A. 2019, Scientific Reports. 9 (724-734).

2018

Expression, functional characterization, and preliminary crystallization of the cochaperone prefoldin from the thermophilic fungus chaetomium thermophilum. Morita, K.; Yamamoto, Y.Y.; Hori, A.; Obata, T.; Uno, Y.; Shinohara, K.; Noguchi, K.; Noi, K.; Ogura, T.; Ishii, K.; Kato, K.; Kikumoto, M.; Arranz, R.; Valpuesta, J.M.; Yohda, M. 2018, International Journal of Molecular Sciences. 19 (1-12).

Structure and function of the cochaperone prefoldin. R Arranz; J. Martín-Benito; JM Valpuesta. 2018, Advances in Experimental Medicine and Biology. 1106 (119-131).

X-ray structure of full-length human RuvB-Like 2–mechanistic insights into coupling between ATP binding and mechanical action. Silva, S.T.N.; Brito, J.A.; Arranz, R.; Sorzano, C.Ó.S.; Ebel, C.; Doutch, J.; Tully, M.D.; Carazo, J.M.; Carrascosa, J.L.; Matias, P.M.; Bandeiras, T.M. 2018, Scientific Reports. 8 (1-131).

2016

Identification of Key Amino Acid Residues Modulating Intracellular and In vitro Microcin E492 Amyloid Formation. Aguilera P; Marcoleta A; Lobos-Ruiz P; Arranz R; Valpuesta JM; Monasterio O; Lagos R. 2016, Frontiers in Microbiology. 7 (1-12).

Resources

  • List